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The diamagnetism of a plasma cloud expanding in a magnetic field is due to currents 
flowing over its surface and compensating the external field within the cloud. The pondero- 
motive force due to surface current interaction with the external magnetic field results in 
retardation of the surface dispersion and deformation of the expanding plasma formation. 

The problem of plasma cloud dispersion in a homogeneous magnetic field in a vacuum has 
been examined earlier in different approximations (see, e.g., [1-7]). In addition to a de- 
tailed analysis of the microscopic processes resulting in surface current formation, the mac- 
roscopic pattern of plasma retardation and the transformation of its energy is investigated 
in [i]. The question of the deformation of plasma formation being dispersed in a homogeneous 
magnetic field was examined in [2-7]. 

The shape of the plasma cloud was determined in [4, 5] on the basis of a numerical solu- 
tion of the hydrodynamics equations taking account of the spatial density inhomogeneity and 
the particle velocity within the plasma formation. A simplified approach based on the assump- 
tion that the plasma cloud is an expanding superconducting shell in which all its mass is 
concentrated was used in [3, 7] to describe the plasma cloud shape. The fact that it is shown 
in a strict solution of the problem in [4, 5] that a thin "crust" is formed at the surface 
of the expanding cloud in which the particle density considerably exceeds the particle den- 
sity within the cloud indicates, on the one hand, the legitimacy of applying such an approxi- 
mate approach. On the other hand, the plasma cloud shape obtained on the basis of using the 
simplified approach is in good agreement with the results of experiments on the dispersion 
of barium clouds in the magnetic field of the earth [7]. 

Because of diamagnetism during expansion in an inhomogeneous magnetic field, the plasma 
cloud is set in motion as a whole, tending to fall into a domain with a lower value of the 
magnetic field intensity. Consequently, a polarized electric charge is formed on the cloud 
surface. In other words, the plasma cloud expanding in an inhomogeneous magnetic field is 
not only an effective magnetic dipole but also an effective electrical dipole. 

The initial stage of plasma cloud dispersion in an inhomogeneous magnetic field (the 
field of a point magnetic dipole) is examined in this paper when the deviation of the shape 
of its surface from a sphere is not large. The shape of the plasma cloud and the distribution 
of the polarized charge on its surface (under the assumption that the cloud is an expanding 
superconducting shell [3, 7]) are found. The expediency of using such an approach was dis- 
cussed above (see [3]). Moreover, it is assumed that the cloud radius is considerably less 
than its distance from the dipole. 

Let us assume that the plasma cloud is a shell described by the equation r = D(@, 9, t) 
in a spherical coordinate system. In this case the mass density can be represented in the 
form 

p(r, O, ~, t ) =  ran(O, 9, t )5 [ r - -D(O,  9, t)], (1)  

where m is the ion mass, n is the particle density integrated over the shell thickness, and 
~(x) is the Dirac delta function. 

Let the functions Vr(@, 9, t), v@(@, 9, t), and v~(@, 9, t) be the radial, meridian, 
and azimuthal components of the shell velocity. We describe evolution of the plasma shell 
in time (see [7]) by the continuity 

OplOt + div(pv) = 0 (2)  
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and motion 

av ] 1 
p ~ f~ - (vV)  v : c [ J X B ] .  (3 )  

equations. Here B is the magnetic-field intensity vector, and J is the surface current den- 
sity. The term in the right side of (3) is the pressure force acting on the cloud surface 
from the magnetic field. 

Since B = 0 for r < D, then the magnetic-field distribution in space can be represented 
by using the Heaviside function as 

B = B N [ r - - D ( 0 ,  ~, t)], (4 )  

where q(x) = 0 (x < 0); q(x) = 1/2 (x = 0); ~(x) = 1 (x > 0). Taking into account that j = 
(c/4~) rot B and using (4), we find 

j = ~ /Sn)[v( r  -- D) X B ] 8 ~  -- D). (5 )  

The d i m e n s i o n l e s s  v a r i a b l e s  and f u n c t i o n s  

r' = r / r  o, t' = t / t  o, v' = v / v  o, n' = n / n  o , 

D' = D/r o, B" = B/Bo, t o = ro/Vo, n o = No/(4gr~). (6 )  

a r e  u t i l i z e d  f o r  t h e  s u b s e q u e n t  c o m p u t a t i o n s .  He re  r 0 i s  t h e  i n i t i a l  s h e l l  r a d i u s ,  v 0 i s  
the initial dispersion velocity, and N O is the total number of particles in the cloud. Sub- 
stituting (i) and (5) into (2) and (3) in this case (see [7] for more details), and going 
over to the dimensionless variables (6), we obtain a system of equations that describes the 
evolution of the plasma shell in time: 

an'/Ot' ~ d i v ( n ' v ' )  = 0; 

aD'/at '  - -  v'  "V (r' - -  D');  

(7) 
(S) 

at' 4- (v ' .  V) v '  = - -  (3 T a V (r' - -  D'),  (9) 

where B' is the magnetic-field intensity on the cloud surface, and a is a dimensionless param- 
eter determined by the expression 

( i Aromu~,. (i0) 

We seek the solution of the system (7)-(9) under the initial conditions 

t '----0: n ' - - - - l ,  D ' : I ,  vr----i, v 0 = 0 ,  v ~ : 0 .  (ii) 

T h e r e  r e s u l t s  f rom (10)  t h a t  t h e  d i m e n s i o n l e s s  p a r a m e t e r  a i s  t h e  r a t i o  be tween  t h e  e n e r -  
gy o f  t h e  u n p e r t u r b e d  m a g n e t i c  f i e l d  c o n c e n t r a t e d  in  t h e  vo lume o c c u p i e d  i n i t i a l l y  by t h e  
p l a s m a  and t h e  i n i t i a l  k i n e t i c  e n e r g y  o f  t h e  p l a s m a .  I t  s h o u l d  e v i d e n t l y  be s m a l l  ( a  << 1 ) ,  
s i n c e  t h e r e  w i l l  o t h e r w i s e  be  no p l a s m a  d i s p e r s i o n .  T h i s  c i r c u m s t a n c e  p e r m i t s  t h e  a p p l i c a -  
t i o n  o f  p e r t u r b a t i o n  t h e o r y  f o r  t h e  s o l u t i o n  o f  s y s t e m  ( 7 ) - ( 9 ) ,  i . e . ,  f i n d i n g  t h e  d e s i r e d  
f u n c t i o n s  in  t h e  fo rm o f  power  s e r i e s  in  a [ 3 ] :  

D, ~ ~ ' n , =  ~ ~ ' v,  ~ k ' = a Dh,  ~ a nh, = a v~. (12) 
k=0  h = 0  h=0 

Since we obtain the solution of system (7)-(9) to the accuracy of first-order terms in 
a below (small deviations of the shell shape from a sphere), then the value of the magnetic 
field on the cloud surface in (9) can be found by considering its shape spherical. 

Let us determine the magnetic field around a superconducting sphere of radius D o in the 
field of a magnetic dipole. The potential of a point magnetic dipole field at the origin 
and directed along the Oz axis has the form [8] 

~ o  = ~ r ~ 3  ( 1 3 )  

(~ i s  i t s  m a g n e t i c  moment ) .  
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Let the center of the sphere be in the zOy plane at a point with coordinates R, and 8 0. 
To solve the problem we go over to a coordinate system with origin at the point R,, e0, with 
the Oz' axis directed along the dipole magnetic-field intensity vector at this point, and 
the Ox' axis parallel to the Ox axis. We represent expression (13) for the potential in the 
new coordinate system in the form 

oo  

q~o = ~ cos Oo (--  t / '  

�9 ~ (n - -  m)l B~.~pl~) (cos O) cos m "2- - -  q) X{A~Pn(cos 0) + 2 ~ T m ) !  

(14) 

Here A n = (n + l) cosGoPn(cOs~) + sine0(d/d~)Pn(cos~); 

d p ( s  (cos  ~); B~m =- (n + i) cos 0oP(n ~) (cos ~) + sin O o 

2 cos 0 o -- sin 0 o 
cos ~3 ----- ; sin ~ _- 

V ' + 3 cos ~ 0o } / ,  + 3 co~ ~ 0 o'  

Pn(x )  a r e  L e g e n d r e  p o l y n o m i a l s ,  and  p n ( m ) ( x )  a r e  a s s o c i a t e d  L e g e n d r e  p o l y n o m i a l s .  

The magnetic field potential in the presence of a superconducting sphere is 

(D = (Do + cDI, 

where 

~1 = AnoP (cos 0) + (cos 0) [Anm cos mq) + Ba~ sin mq)] 
n ~ O  W~I 

is the solution of the Laplace equation and ~nm and Bnm are arbitrary constants. 
magnetic-field components on the sphere surface should equal zero: 

(15) 

The normal 

I O r=Do ~ + V r ~ l  = 0 .  
Or 0 r=Do (16) 

Substituting (14) and (15) into (16) and using the orthogonality of the appropriate poly- 
nomials, it is easy to determine the coefficients %nm and Bnm" We finally obtain for the 
magnetic-field potential 

X 

oo  

w ?i~l 

A?~P~ (cos 0) + 2 (n ~ m)! ~ - - ~  

(17) 

Using (17), the magnetic-field components near the sphere can be found from the formula ~ = 
-~@, and which have the following form on the sphere surface to the accuracy of second-order 
terms in (D0/R , ) 

B r = 0 ,  B~ 1 ) ~ - B  o 7 s i n 0  (1+3cos  ~ 

X (t-~-2 c~ 0o)@ c~ 20 sin q~ sin 0o (t-~-c~ 0o)@--12 sin 20 sin2 q) sinZ Oo c~ 0o]} ' (18) 

B~I)= (t + 3 cos ~ 0o)~12 t ' + =i sin 0 sin 2q) sin 2 0 o cos 

[B 0 = (~R..~s)r + 3 cos 2 @ o is the dipole magnetic-field intensity at a point coincident with 
the center of the sphere]. 

Now let us determine the shape of the plasma cloud and its expansion rate. Substituting 
(12) into system (7)-(9), using (18) and equating terms of identical powers of ~, we obtain 
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a system of equations for the functions Dk', nk' , and vu. Taking account of the initial 
conditions (ii), we represent the solution of the system found in this manner (to the accu- 
racy of first-order terms in a) in the form 

D' = t + t' 9 at,~ (s 6) sin s 0 27 / r o ~ [t,3 5t,2 t0] OF (0, q~); - -  ~ -+ 4t' + + ~ cZ k-~** ) t '2 + + t O t ' +  sin (19)  

v ~ = i - - ( 9 / 8 ) a ( t ' a + 3 t ' 2 + 3 t ' ) s i n 2 0 + ( 2 7 / 1 6 ) a ( r o / R , ) X [ t ' 4 + 4 t ' 3 + 6 t ' 2 + 4 t ' ] s i n O F ( O , ~ ) .  (20)  

t 

Here v~= v 8' = O: 

(10/3) ( 
F (0, ~) = ( t  + 3 cos 2 00)3/~ 2 sin 20 cos 00(t + 2 cos 2 00) + 

+ cos 20 sin ~ sin 00 (l + cos ~ 00) + :2 sin 20 sin 2 ~ sin 2 00 cos 00 . 

+ ~ t h e  r e s u l t  o b t a i n e d  d e s c r i b e s  t h e  p l a s m a - c l o u d  e x p a n s i o n  i n t o  a homogeneous  mag- As R, 
netic field. In this case, the expression for the cloud shape (the function D') agrees exact 
ly with an analogous expression from [3]. The domain of applicability of this result is evi- 
dently limited by the condition t' << (32/9~) I/3 ------ T. 

Let us estimate the influence of the magnetic field inhomogeneity on the shape of the 
plasma cloud surface for a = (2/3)'I0-2(T = 8) [3]. Results of computations executed accor- 
ding to (19) are represented in Fig. i. The curves map a section of the cloud surface on 
the yOz plane for 00 = ~/2 (the source lies in the plane of the dipole magnetic equator). 
It was assumed r0T/R , = 1/5 in the computations. The nonsymmetry of the surface with respect 
to the Oz axis is due to inhomogeneity of the magnetic field. 

Let us determine the polarized charge being formed on the cloud surface as it expands. 
Since the plasma cloud expanded at a rate much less than the speed of light (v << c), then 
a quasistatic approximation can be utilized. In this case the electrical field is described 
by the Maxwell equations 

r o t E =  i OB. ~, (21)  
Lc~ 0t i 

div E = 0 (22)  

( t h e  m a g n e t i c - f i e l d  i n t e n s i t y  i s  f ound  a b o v e ) .  T a k i n g  t h e  c u r l  o f  b o t h  s i d e s  o f  ( 2 1 ) ,  we 
h a v e  

AE = 0. (23)  

[v  a n d B  a r e  found  f r o m  (18 )  and ( 2 0 ) ] .  

For  t h e  s o l u t i o n  o f  t h i s  e q u a t i o n ,  t h e  b o u n d a r y  c o n d i t i o n s  u s e d  t h e  r e l a t i o n s h i p  be tween  t h e  
t a n g e n t i a l  c o m p o n e n t s  o f  t h e  e l e c t r i c a l  f i e l d  a t  t h e  s u r f a c e  o f  t h e  s u p e r c o n d u c t o r  and t h e  
v e l o c i t y  o f  i t s  s u r f a c e :  

E~ = --  ~ Iv•  B]~ ( 24 ) 

We assume  in  t h e  c a l c u l a t i o n  o f  t h e  p o l a r i z e d  c h a r g e  t h a t  t h e  p l a s m a  c l o u d  i s  a s p h e r e  
o f  r a d i u s  D 0 ( t )  whose e x p a n s i o n  v e l o c i t y  a t  e a c h  i n s t a n t  i s  d e s c r i b e d  by ( 2 0 ) .  S i n c e  t h e  
p o l a r i z e d  c h a r g e  o b t a i n e d  in  t h i s  c a s e  i s  p r o p o r t i o n a l  t o  t h e  s m a l l  p a r a m e t e r  a ( s e e  b e l o w ) ,  
t h e n  t a k i n g  a c c o u n t  o f  t h e  d e v i a t i o n  o f  t h e  s u r f a c e  s h a p e  f r o m  a s p h e r e  w i l l  r e s u l t  i n  t h e  
a p p e a r a n c e  o f  t e r m s  o f  t h e  n e x t  o r d e r  o f  s m a l l n e s s .  T a k i n g  t h i s  i n t o  a c c o u n t ,  we o b t a i n  [ s e e  
( 2 4 ) ]  t h a t  on t h e  c l o u d  s u r f a c e  
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Ee(r = Do) -= (vr/c)B~(r = Do), 
Er = Do) = -- (vr/c)Be (r = Do). 

The boundary conditions for the components of the field E r can be found by using (22): 

t a (r2E~)_ i {  0% B o av~} 
7 ar --c Bm aO sinO ar  -~-I(O' q)). 

It is taken into account here that (rot B) r = 0 on the cloud surface. 

Applying (22), we have from (23) for the radial electrical-field component 

(25) 

r~ ar ~r2 7"~-/ + 7 ~7" (rET) + 

l c~ ( OET "~ 1 a2Er 
-1" r 2sinO ~ sinO--~-)-~- r~sinO aT ~ = 0 .  

(26) 

The solution of (26) that decreases at infinity more rapidly than (l/r) takes the form 

i=~o (~/D \i+2[. , 1~ } 8 , =  ( 2 7 )  

(Kjm and Ljm 
we find 

are arbitrary constants). Substituting (27) into the boundary condition (25), 

f " K ~ =  (2j+t)  U--mll dq~eosmqDJ d@ sin OP}~) (eos O) I (@, ~)~ 2aj (j q-m)I , 
0 0 
2 g  g 

-= 2a] (]~m)! de Osinmq) dO sin@Pl m(eos0)  I ( 0 , @ .  
0 0 

(28) 

Having determined the coefficients K. m and Ljm , we obtain the expression for the radial elec- 
tric field component (27) and for t~e surface charge distribution on a plasma cloud 

~..o ( T  KjoPj i Er (r = Do) i 1 (~ = -~ = -~  (cos O) + 

(29  

Using (18) and (20), we have for t' > 1 [see (25)] 

4: . 
I if), 9) = Io (sin 0 cos 20 - -  y sm 0 cos O) X 

' t  
Xcos T(I  + cos2 0o) + (-~ sin O sin 20 - -  2 sin2 0 cos O) sin 2qo sin Oo cos Oo},. 

sin 0 o 

Substituting (30) into (28), we obtain 

(3o 

Kjm = I O (1 + 0082 0o) 5ml ~ 13 4 } 

Lira = 1 o sin O a cos 9 __i 5iz5 m o 45 

(3i) 

(6jm is the Kronecker delta). Applying (29) and (31) we find that the polarized charge den- 
sity on the plasma cloud surface is described by the expression 

cr = --(Io/4a)  sin 0 cos q){(l + cos20o)[I - -  (2/3) cos20] - -  

- - ( t /3 )  sin 0 o cos 0 o sin 20 sin q~}. 
(32) 
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That the electrical dipole moment of the cloud is directed along the Ox axis is easily ob- 
tained from (32): 

~3 ~ (1 + c o s  ~0o), P~ = - -  "~" Dofo  

while the total electrical charge on a hemisphere is 

q = (5/24) D~Io (t + cos  ~ Oo). ( 3 3 )  

Let us note that the obtained result can be estimated on the basis of simple qualitative 
considerations. Indeed, being a diamagnet, the plasma cloud is ejected by a magnetic field 
toward its attenuation. The characteristic velocity of such a motion is proportional to the 
magnetic-field inhomogeneity, i.e., v ~ v0(D0/R,). As a result of such a motion a polarized 
electrical field is formed with intensity E n - vB0/c = (v0B0/c)(D0/R ,) that results in the 
surface charge density a = En/4~. As regards the angular dependence, then as a result of 
o - sin 0 cos ~ we arrive at the case when we consider cloud motion as the motion of a "stiff" 
sphere. 

Let us estimate the magnitude of the polarized charge in the dispersion stage when the 
transverse cloud dimension approaches the maximal dimension, i.e., ~t '3 = I. For e o = ~/2, 
we obtain q = 1.76(v0B0/c)D02(D0/R,) from (33). We obtain q ~ 0.15 C for an experiment [i] 
with e 0 = 4.2"1019 erg, B 0 = 0.50e, R.~ = R e (R e is the earth's radius), M = l0 s g. Since 
q - s03/2R, 2, then it follows that as the plasma cloud energy and its distance from the di- 
pole increase, q will grow and can reach values on the order of hundreds and thousands of 

Coulombs. 
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